Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.883
Filtrar
1.
Sci Rep ; 14(1): 8337, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594459

RESUMO

Accessible SARS-CoV-2-specific immunoassays may inform clinical management in people with HIV, particularly in case of persisting immunodysfunction. We prospectively studied their application in vaccine recipients with HIV, purposely including participants with a history of advanced HIV infection. Participants received one (n = 250), two (n = 249) or three (n = 42) doses of the BNT162b2 vaccine. Adverse events were documented through questionnaires. Sample collection occurred pre-vaccination and a median of 4 weeks post-second dose and 14 weeks post-third dose. Anti-spike and anti-nucleocapsid antibodies were measured with the Roche Elecsys chemiluminescence immunoassays. Neutralising activity was evaluated using the GenScript cPass surrogate virus neutralisation test, following validation against a Plaque Reduction Neutralization Test. T-cell reactivity was assessed with the Roche SARS-CoV-2 IFNγ release assay. Primary vaccination (2 doses) was well tolerated and elicited measurable anti-spike antibodies in 202/206 (98.0%) participants. Anti-spike titres varied widely, influenced by previous SARS-CoV-2 exposure, ethnicity, intravenous drug use, CD4 counts and HIV viremia as independent predictors. A third vaccine dose significantly boosted anti-spike and neutralising responses, reducing variability. Anti-spike titres > 15 U/mL correlated with neutralising activity in 136/144 paired samples (94.4%). Three participants with detectable anti-S antibodies did not develop cPass neutralising responses post-third dose, yet displayed SARS-CoV-2 specific IFNγ responses. SARS-CoV-2 vaccination is well-tolerated and immunogenic in adults with HIV, with responses improving post-third dose. Anti-spike antibodies serve as a reliable indicator of neutralising activity. Discordances between anti-spike and neutralising responses were accompanied by detectable IFN-γ responses, underlining the complexity of the immune response in this population.


Assuntos
COVID-19 , Infecções por HIV , Aranhas , Adulto , Animais , Humanos , SARS-CoV-2 , Vacina BNT162 , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Imunoensaio , Anticorpos , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
PLoS One ; 19(4): e0298865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568873

RESUMO

Haiku are short poems, each composed of about 10 words, that typically describe moments in nature. People have written haiku since at least the 17th century, and the medium continues to be popular with poets, amateurs, educators, and students. Collectively, these poems represent an opportunity to understand which aspects of nature-e.g., which taxa and biological traits-resonate with humans and whether there are temporal trends in their representation or the emotions associated with these moments. We tested this potential using a mix of linguistic and biological methods, in analyses of nearly 4,000 haiku that reference arthropods. We documented the taxa and the life history traits represented in these poems and how they changed over time. We also analyzed the poems for emotion and tone. Our results reveal a mix of predictable trends and compelling surprises, each of which stand to potentially inform engagement strategies. At least 99 families of arthropods, in 28 orders, are represented in these haiku. The eight most commonly referenced taxa, from highest to lowest number of references, include: Lepidoptera, Hymenoptera, Diptera, Coleoptera, Araneae, Orthoptera, Hemiptera, and Odonata. Several common, conspicuous orders were never referenced, including Trichoptera, Plecoptera, and Megaloptera. The most commonly referenced traits relate to ecology (especially habitat, phenology, time of day), behavior (especially sound production), phenotype (especially color), and locomotion (especially flight). The least common traits in haiku relate to arthropod reproduction and physiology. Our analyses revealed few obvious temporal trends in the representations of taxa, biological traits, or emotion and tone. The broader implications of these results and possible future directions are discussed.


Assuntos
Artrópodes , Besouros , Ortópteros , Aranhas , Animais , Humanos , Insetos
3.
Proc Biol Sci ; 291(2020): 20232340, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593845

RESUMO

Studies of adaptive radiations have played a central role in our understanding of reproductive isolation. Yet the focus has been on human-biased visual and auditory signals, leaving gaps in our knowledge of other modalities. To date, studies on chemical signals in adaptive radiations have focused on systems with multimodal signalling, making it difficult to isolate the role chemicals play in reproductive isolation. In this study we examine the use of chemical signals in the species recognition and adaptive radiation of Hawaiian Tetragnatha spiders by focusing on entire communities of co-occurring species, and conducting behavioural assays in conjunction with chemical analysis of their silks using gas chromatography-mass spectrometry. Male spiders significantly preferred the silk extracts of conspecific mates over those of sympatric heterospecifics. The compounds found in the silk extracts, long chain alkyl methyl ethers, were remarkably species-specific in the combination and quantity. The differences in the profile were greatest between co-occurring species and between closely related sibling species. Lastly, there were significant differences in the chemical profile between two populations of a particular species. These findings provide key insights into the role chemical signals play in the attainment and maintenance of reproductive barriers between closely related co-occurring species.


Assuntos
Aranhas , Animais , Humanos , Masculino , Havaí , Especificidade da Espécie , Isolamento Reprodutivo , Seda
4.
Biol Lett ; 20(4): 20240009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38653332

RESUMO

Heatwaves are increasingly prevalent and can constrain investment into important life-history traits. In addition to heatwaves, animals regularly encounter threats from other organisms in their environments, such as predators. The combination of these two environmental factors introduces a decision-making conflict-heat exposure requires more food intake to fuel investment into fitness-related traits, but foraging in the presence of predators increases the threat of mortality. Thus, we used female variable field crickets (Gryllus lineaticeps) to investigate the effects of heatwaves in conjunction with predation risk (exposed food and water sources, and exposure to scent from black widow spiders, Latrodectus hesperus) on resource acquisition (food intake) and allocation (investment into ovarian and somatic tissues). A simulated heatwave increased food intake and the allocation of resources to reproductive investment. Crickets exposed to high predation risk reduced food intake, but they were able to maintain reproductive investment at an expense to investment into somatic tissue. Thus, heatwaves and predation risk deprioritized investment into self-maintenance, which may impair key physiological processes. This study is an important step towards understanding the ecology of fear in a warming world.


Assuntos
Gryllidae , Comportamento Predatório , Aranhas , Animais , Gryllidae/fisiologia , Feminino , Aranhas/fisiologia , Temperatura Alta/efeitos adversos , Reprodução/fisiologia , Ingestão de Alimentos
5.
Sci Rep ; 14(1): 8556, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609398

RESUMO

The invasive brown widow spider, Latrodectus geometricus (Araneae: Theridiidae), has spread in multiple locations around the world and, along with it, brought associated organisms such as endosymbionts. We investigated endosymbiont diversity and prevalence across putative native and invasive populations of this spider, predicting lower endosymbiont diversity across the invasive range compared to the native range. First, we characterized the microbial community in the putative native (South Africa) and invasive (Israel and the United States) ranges via high throughput 16S sequencing of 103 adult females. All specimens were dominated by reads from only 1-3 amplicon sequence variants (ASV), and most individuals were infected with an apparently uniform strain of Rhabdochlamydia. We also found Rhabdochlamydia in spider eggs, indicating that it is a maternally-inherited endosymbiont. Relatively few other ASV were detected, but included two variant Rhabdochlamydia strains and several Wolbachia, Spiroplasma and Enterobacteriaceae strains. We then diagnostically screened 118 adult female spiders from native and invasive populations specifically for Rhabdochlamydia and Wolbachia. We found Rhabdochlamydia in 86% of individuals and represented in all populations, which suggests that it is a consistent and potentially important associate of L. geometricus. Wolbachia was found at lower overall prevalence (14%) and was represented in all countries, but not all populations. In addition, we found evidence for geographic variation in endosymbiont prevalence: spiders from Israel were more likely to carry Rhabdochlamydia than those from the US and South Africa, and Wolbachia was geographically clustered in both Israel and South Africa. Characterizing endosymbiont prevalence and diversity is a first step in understanding their function inside the host and may shed light on the process of spread and population variability in cosmopolitan invasive species.


Assuntos
Animais Venenosos , Chlamydiales , Aranhas , Wolbachia , Humanos , Adulto , Animais , Feminino , Ovos
6.
Ecol Lett ; 27(3): e14394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511320

RESUMO

Functional responses describe foraging rates across prey densities and underlie many fundamental ecological processes. Most functional response knowledge comes from simplified lab experiments, but we do not know whether these experiments accurately represent foraging in nature. In addition, the difficulty of conducting multispecies functional response experiments means that it is unclear whether interaction strengths are weakened in the presence of multiple prey types. We developed a novel method to estimate wild predators' foraging rates from metabarcoding data and use this method to present functional responses for wild wolf spiders foraging on 27 prey families. These field functional responses were considerably reduced compared to lab functional responses. We further find that foraging is sometimes increased in the presence of other prey types, contrary to expectations. Our novel method for estimating field foraging rates will allow researchers to determine functional responses for wild predators and address long-standing questions about foraging in nature.


Assuntos
Animais Venenosos , Comportamento Predatório , Aranhas , Animais , Humanos , Comportamento Predatório/fisiologia , Aranhas/fisiologia
7.
Zootaxa ; 5399(5): 517-539, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38480122

RESUMO

The Caatinga is a nucleus of seasonally dry tropical forest (SDTF) known as a hotspot of diversification and endemism. Despite its importance, this biome is still insufficiently sampled, resulting in extensive knowledge gaps regarding its species richness and composition. In this study we report two species of Xenoctenidae that are endemic to, and widely distributed in the Caatinga. We redescribe and illustrate Odo vittatus (Mello-Leito, 1936), the only xenoctenid species previously known from the Caatinga. We transfer this species to Xenoctenus Mello-Leito,1938, a genus currently known from six species restricted to Argentina, Bolivia, and Colombia. We also newly describe the male of Xenoctenus vittatus comb. nov. and provide new records of this species, which was hitherto known only from the type-locality, throughout the Caatinga and nearby semiarid vegetation formations. We also describe and illustrate a new species, Xenoctenus kaatinga sp. nov., based on males and female specimens collected throughout the Caatinga. Additionally, we propose diagnostic characters for Xenoctenus and redescribe the type-species, X. unguiculatus.


Assuntos
Aranhas , Animais , Feminino , Masculino , Brasil , Ecossistema , Florestas
8.
Parasite ; 31: 13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450719

RESUMO

Tsetse flies (genus Glossina) transmit deadly trypanosomes to human populations and domestic animals in sub-Saharan Africa. Some foci of Human African Trypanosomiasis due to Trypanosoma brucei gambiense (g-HAT) persist in southern Chad, where a program of tsetse control was implemented against the local vector Glossina fuscipes fuscipes in 2018 in Maro. We analyzed the population genetics of G. f. fuscipes from the Maro focus before control (T0), one year (T1), and 18 months (T2) after the beginning of control efforts. Most flies captured displayed a local genetic profile (local survivors), but a few flies displayed outlier genotypes. Moreover, disturbance of isolation by distance signature (increase of genetic distance with geographic distance) and effective population size estimates, absence of any genetic signature of a bottleneck, and an increase of genetic diversity between T0 and T2 strongly suggest gene flows from various origins, and a limited impact of the vector control efforts on this tsetse population. Continuous control and surveillance of g-HAT transmission is thus recommended in Maro. Particular attention will need to be paid to the border with the Central African Republic, a country where the entomological and epidemiological status of g-HAT is unknown.


Title: Impact limité de la lutte antivectorielle sur la structure des populations de Glossina fuscipes fuscipes dans le foyer de la maladie du sommeil de Maro, Tchad. Abstract: Les mouches tsé-tsé (genre Glossina) transmettent des trypanosomes mortels aux populations humaines ainsi qu'aux animaux domestiques en Afrique sub-saharienne. Certains foyers de la trypanosomiase humaine Africaine due à Trypanosoma brucei gambiense (THA-g) persistent au sud du Tchad, où un programme de lutte antivectorielle a été mis en place contre le vecteur local de la maladie, Glossina fuscipes fuscipes, en particulier à Maro en 2018. Nous avons analysé la structure génétique des populations de G. f. fuscipes de ce foyer à T0 (avant lutte), une année après le début de la lutte (T1), et 18 mois après (T2). La plupart des mouches capturées après le début de la lutte ont montré un profil génétique local (survivants locaux), mais quelques-unes d'entre elles présentaient des génotypes d'individus atypiques. Par ailleurs, la présence de perturbations des signatures d'isolement par la distance (augmentation de la distance génétique avec la distance géographique), l'absence de signature génétique d'un goulot d'étranglement, et un accroissement de la diversité génétique entre T0 et T2 sont des arguments forts en faveur de la recolonisation de la zone par des mouches d'origines variées, tout en témoignant des effets limités de la campagne de lutte dans ce foyer. Ces résultats conduisent à recommander une lutte et une surveillance continues dans le foyer de Maro. Une attention particulière devra par ailleurs être prêtée à l'autre côté de la rive, située côté République Centre Africaine, dont le statut épidémiologique reste inconnu concernant les tsé-tsé et la THA-g.


Assuntos
Aranhas , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/genética , Chade/epidemiologia , Trypanosoma brucei gambiense/genética , Animais Domésticos
9.
Bull Environ Contam Toxicol ; 112(3): 47, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460017

RESUMO

Riparian tetragnathid spiders are used as biosentinels of aquatic contamination because they are specialized feeders of aquatic emergent insects and are also prey items for terrestrial predators (e.g., birds). Analysis of both trophic position (e.g., stable nitrogen isotopes) and contaminant concentrations are needed to utilize tetragnathids as biosentinels, which can present challenges when collecting enough biomass to reach analytical detection limits, due to their relatively small size. The purpose of this study was to investigate the impacts of a controlled diet source on spider biomass, egg laying and stable isotope values (δ13C and δ15N). Diet significantly influenced the biomass and egg laying of tetragnathids, with some spiders losing up to 50% of their biomass in a single egg-laying event. δ13C had a faster turnover rate in the whole-body of spiders compared to legs, which is important, as spider legs are presently used as surrogates for whole-body δ13C values.


Assuntos
Aranhas , Animais , Biomassa , Cadeia Alimentar , Isótopos de Nitrogênio/análise , Dieta
10.
Sci Rep ; 14(1): 7486, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553514

RESUMO

Wolbachia (phylum Pseudomonadota, class Alfaproteobacteria, order Rickettsiales, family Ehrlichiaceae) is a maternally inherited bacterial symbiont infecting more than half of arthropod species worldwide and constituting an important force in the evolution, biology, and ecology of invertebrate hosts. Our study contributes to the limited knowledge regarding the presence of intracellular symbiotic bacteria in spiders. Specifically, we investigated the occurrence of Wolbachia infection in the spider species Enoplognatha latimana Hippa and Oksala, 1982 (Araneae: Theridiidae) using a sample collected in north-western Poland. To the best of our knowledge, this is the first report of Wolbachia infection in E. latimana. A phylogeny based on the sequence analysis of multiple genes, including 16S rRNA, coxA, fbpA, ftsZ, gatB, gltA, groEL, hcpA, and wsp revealed that Wolbachia from the spider represented supergroup A and was related to bacterial endosymbionts discovered in other spider hosts, as well as insects of the orders Diptera and Hymenoptera. A sequence unique for Wolbachia supergroup A was detected for the ftsZ gene. The sequences of Wolbachia housekeeping genes have been deposited in publicly available databases and are an important source of molecular data for comparative studies. The etiology of Wolbachia infection in E. latimana is discussed.


Assuntos
Aranhas , Wolbachia , Animais , Proteínas de Bactérias/genética , Wolbachia/genética , RNA Ribossômico 16S/genética , Polônia , Aranhas/genética , Filogenia
11.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542528

RESUMO

Spider silk has extraordinary mechanical properties, displaying high tensile strength, elasticity, and toughness. Given the high performance of natural fibers, one of the long-term goals of the silk community is to manufacture large-scale synthetic spider silk. This process requires vast quantities of recombinant proteins for wet-spinning applications. Attempts to synthesize large amounts of native size recombinant spidroins in diverse cell types have been unsuccessful. In these studies, we design and express recombinant miniature black widow MaSp1 spidroins in bacteria that incorporate the N-terminal and C-terminal domain (NTD and CTD), along with varying numbers of codon-optimized internal block repeats. Following spidroin overexpression, we perform quantitative analysis of the bacterial proteome to identify proteins associated with spidroin synthesis. Liquid chromatography with tandem mass spectrometry (LC MS/MS) reveals a list of molecular targets that are differentially expressed after enforced mini-spidroin production. This list included proteins involved in energy management, proteostasis, translation, cell wall biosynthesis, and oxidative stress. Taken together, the purpose of this study was to identify genes within the genome of Escherichia coli for molecular targeting to overcome bottlenecks that throttle spidroin overexpression in microorganisms.


Assuntos
Fibroínas , Aranhas , Animais , Fibroínas/química , Proteômica , Espectrometria de Massas em Tandem , Seda/química , Proteínas Recombinantes/química , Bactérias , Aranhas/genética
12.
Methods Mol Biol ; 2758: 331-340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549023

RESUMO

Spider venoms are composed of hundreds of proteins and peptides. Several of these venom toxins are cysteine-rich peptides in the mass range of 3-9 kDa. Small peptides (<3 kDa) can be fully characterized by mass spectrometry analysis, while proteins are generally identified by the bottom-up approach in which proteins are first digested with trypsin to generate shorter peptides for MS/MS characterization. In general, it is sufficient for protein identification to sequence two or more peptides, but for venom peptidomics it is desirable to completely elucidate peptide sequences and the number of disulfide bonds in the molecules. In this chapter, we describe a methodology to completely sequence and determine the number of disulfide bonds of spider venom peptides in the mass range of 3-9 kDa by multiple enzyme digestion, mass spectrometry of native and digested peptides, de novo analysis, and sequence overlap alignment.


Assuntos
Venenos de Aranha , Aranhas , Animais , Espectrometria de Massas em Tandem , Venenos de Aranha/química , Peptídeos/química , Sequência de Aminoácidos , Dissulfetos/análise , Aranhas/metabolismo
13.
PLoS One ; 19(3): e0301290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551985

RESUMO

Mating plugs in animals are ubiquitous and are commonly interpreted to be products of mating strategies. In spiders, however, mating plugs may also take on functions beyond female remating prevention. Due to the vagaries of female genital (spermathecal) anatomy, most spiders face the problem of having to secure additional, non-anatomical, protection for transferred sperm. Here, we test the hypothesis that mating plugs, rather than (or in addition to) being adaptations for mating strategies, may serve as sperm protection mechanism. Based on a comparative study on 411 epigyna sampled from 36 families, 187 genera, 330 species of entelegyne spiders, our results confirm the necessity of a sperm protection mechanism. We divided the entelegyne spermathecae into four types: SEG, SED, SCG and SCD. We also studied detailed morphology of epigynal tracts in the spider Diphya wulingensis having the SEG type spermathecae, using 3D-reconstruction based on semi thin histological series section. In this species, we hypothesize that two distinct types of mating plug, the sperm plug and the secretion plug, serve different functions. Morphological details support this: sperm plugs are formed on a modified spermathecal wall by the spilled sperm, and function as a temporary protection mechanism to prevent sperm from leaking and desiccating, while secretion plugs function in postcopulation both as a permanent protection mechanism, and to prevent additional mating. Furthermore, with the modified spermathecal wall of S2 stalk, the problem of shunt of sperm input and output, and the possibility of female multiple mating have been resolved. Variation in spermathecal morphology also suggests that the problem of sperm protection might be resolved in different ways in spiders. Considering mating plugs of varying shapes and origins in the vast morphospace of spiders, we conclude that mating plugs might serve different purposes that relate both to mating strategies, as well as to sperm protection.


Assuntos
Comportamento Sexual Animal , Aranhas , Humanos , Animais , Masculino , Feminino , Aranhas/anatomia & histologia , Sêmen , Reprodução , Espermatozoides
14.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 687-704, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545971

RESUMO

Spider silk is a natural fiber known as "biosteel" with the strongest composite performance, such as high tensile strength and toughness. It is also equipped with excellent biocompatibility and shape memory ability, thus shows great potential in many fields such as biomedicine and tissue engineering. Spider silk is composed of macromolecular spidroin with rich structural diversity. The characteristics of the primary structure of natural spidroin, such as the high repeatability of amino acids in the core repetitive region, the high content of specific amino acids, the large molecular weight, and the high GC content of the spidroin gene, have brought great difficulties in heterologous expression. This review discusses focuses on the relationship between the featured motifs of the microcrystalline region in the repetitive unit of spidroin and its structure, as well as the spinning performance and the heterologous expression. The optimization design for the sequence of spidroin combined with heterologous expression strategy has greatly promoted the development of the biosynthesis of spider silk proteins. This review may facilitate the rational design and efficient synthesis of recombinant spidroin.


Assuntos
Fibroínas , Aranhas , Animais , Seda/genética , Seda/química , Fibroínas/genética , Fibroínas/química , Proteínas de Artrópodes , Materiais Biocompatíveis , Aminoácidos , Aranhas/genética
15.
J Anxiety Disord ; 103: 102844, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428276

RESUMO

Excessive avoidance is characteristic for anxiety disorders, even when approach would lead to positive outcomes. The process of how such approach-avoidance conflicts are resolved is not sufficiently understood. We examined the temporal dynamics of approach-avoidance in intense fear of spiders. Highly fearful and non-fearful participants chose repeatedly between a fixed no spider/low reward and a spider/high reward option with varying fear (probability of spider presentation) and reward information (reward magnitude). By sequentially presenting fear and reward information, we distinguished whether decisions are dynamically driven by both information (sequential-sampling) or whether the impact of fear information is inhibited (cognitive control). Mouse movements were recorded to assess temporal decision dynamics (i.e., how strongly which information impacts decision preference at which timepoint). Highly fearful participants showed stronger avoidance despite lower gains (i.e., costly avoidance). Time-continuous multiple regression of their mouse movements yielded a stronger impact of fear compared to reward information. Importantly, presenting either information first (fear or reward) enhanced its impact during the early decision process. These findings support sequential sampling of fear and reward information, but not inhibitory control. Hence, pathological avoidance may be characterized by biased evidence accumulation rather than altered cognitive control.


Assuntos
Transtornos Fóbicos , Aranhas , Humanos , Animais , Camundongos , Transtornos Fóbicos/psicologia , Aprendizagem da Esquiva , Medo/psicologia , Transtornos de Ansiedade , Recompensa
16.
Mol Phylogenet Evol ; 195: 108061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485107

RESUMO

Cryptic species are not diagnosable via morphological criteria, but can be detected through analysis of DNA sequences. A number of methods have been developed for identifying species based on genetic data; however, these methods are prone to over-splitting taxa with extreme population structure, such as dispersal-limited organisms. Machine learning methodologies have the potential to overcome this challenge. Here, we apply such approaches, using a large dataset generated through hybrid target enrichment of ultraconserved elements (UCEs). Our study taxon is the Aoraki denticulata species complex, a lineage of extremely low-dispersal arachnids endemic to the South Island of Aotearoa New Zealand. This group of mite harvesters has been the subject of previous species delimitation studies using smaller datasets generated through Sanger sequencing and analytical approaches that rely on multispecies coalescent models and barcoding gap discovery. Those analyses yielded a number of putative cryptic species that seems unrealistic and extreme, based on what we know about species' geographic ranges and genetic diversity in non-cryptic mite harvesters. We find that machine learning approaches, on the other hand, identify cryptic species with geographic ranges that are similar to those seen in other morphologically diagnosable mite harvesters in Aotearoa New Zealand's South Island. We performed both unsupervised and supervised machine learning analyses, the latter with training data drawn either from animals broadly (vagile and non-vagile) or from a custom training dataset from dispersal-limited harvesters. We conclude that applying machine learning approaches to the analysis of UCE-derived genetic data is an effective method for delimiting species in complexes of low-vagility cryptic species, and that the incorporation of training data from biologically relevant analogues can be critically informative.


Assuntos
Aracnídeos , Aranhas , Animais , Filogenia , Aprendizado de Máquina , Nova Zelândia
17.
J Emerg Med ; 66(4): e467-e469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462393

RESUMO

BACKGROUND: Literature on systemic envenomation caused by tarantula bites, particularly from the Theraphosidae family, is relatively scarce. This case report provides a formal description of the first known instance of systemic envenomation caused by the Socotra Island Blue Baboon Tarantula (Monocentropus balfouri). CASE REPORT: In this case, a 23-year-old employee of an exotic pet shop suffered from perioral paresthesia, generalized muscle cramps, and rhabdomyolysis because of a Monocentropus balfouri bite. His symptoms were successfully relieved with oral benzodiazepines. EMERGENCY PHYSICIAN BE AWARE OF THIS?: This case highlights the potential for serious complications resulting from the bite of Monocentropus balfouri, a species gaining popularity among global exotic pet collectors.


Assuntos
Rabdomiólise , Picaduras de Aranhas , Aranhas , Animais , Humanos , Adulto Jovem , Adulto , Cãibra Muscular , Picaduras de Aranhas/complicações , Parestesia/etiologia , Espasmo , Rabdomiólise/complicações
18.
PeerJ ; 12: e16781, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435991

RESUMO

Madagascar is a global biodiversity hotspot, but its biodiversity continues to be underestimated and understudied. Of raft spiders, genus Dolomedes Latreille, 1804, literature only reports two species on Madagascar. Our single expedition to humid forests of eastern and northern Madagascar, however, yielded a series of Dolomedes exemplars representing both sexes of five morphospecies. To avoid only using morphological diagnostics, we devised and tested an integrative taxonomic model for Dolomedes based on the unified species concept. The model first determines morphospecies within a morphometrics framework, then tests their validity via species delimitation using COI. It then incorporates habitat preferences, geological barriers, and dispersal related traits to form hypotheses about gene flow limitations. Our results reveal four new Dolomedes species that we describe from both sexes as Dolomedes gregoric sp. nov., D. bedjanic sp. nov., D. hydatostella sp. nov., and D. rotundus sp. nov. The range of D. kalanoro Silva & Griswold, 2013, now also known from both sexes, is expanded to eastern Madagascar. By increasing the known raft spider diversity from one valid species to five, our results merely scratch the surface of the true Dolomedes species diversity on Madagascar. Our integrative taxonomic model provides the framework for future revisions of raft spiders anywhere.


Assuntos
Aranhas , Animais , Feminino , Masculino , Biodiversidade , Madagáscar , Aranhas/genética
19.
Zootaxa ; 5403(4): 459-468, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38480424

RESUMO

Wandering spiders (genus Phoneutria) hold a prominent position as some of the worlds most medically significant venomous arachnids, especially in Brazil. In this study, we record and illustrate for the first time, the Darwin wasp Camera thoracica (Szpligeti, 1916) as a natural enemy of the ctenid Phoneutria nigriventer (Keyserling, 1891). Furthermore, we provide a description of the previously unknown male wasp, update and standardize the description of the female, and provide biological notes.


Assuntos
Animais Venenosos , Aranhas , Thoracica , Vespas , Animais , Feminino , Masculino
20.
Molecules ; 29(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474537

RESUMO

Spider silk protein, renowned for its excellent mechanical properties, biodegradability, chemical stability, and low immune and inflammatory response activation, consists of a core domain with a repeat sequence and non-repeating sequences at the N-terminal and C-terminal. In this review, we focus on the relationship between the silk structure and its mechanical properties, exploring the potential applications of spider silk materials in the detection of energetic materials.


Assuntos
Seda , Aranhas , Sequências Repetitivas de Ácido Nucleico , Seda/química , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA